Lifecycle Analysis of Materials

How can we design materials that follow the 12 Principles of Green Chemistry?

What kinds of materials make up our world?

What kinds of materials make up our world?

- Paper
- Plastics
- Metals
- Glass
- Ceramics
- Semiconductors
- Composites

How are these materials used?

- Paper writing, packaging
- Plastics containers, toys, medical instruments, clothing/footwear, electronics
- Metals wire, foil, car parts, building materials, cooking utensils
- Glass lenses, windows
- Ceramics dishes, building materials, toilets, bone/tooth replacements
- Semiconductors electronics
- Composites athletic equipment, spacecraft, insulation, car parts

What are some problems with these materials?

- Paper large amounts of wood pulp and water are used in manufacturing
- Plastics involves potentially toxic solvents and starting materials
- Metals require high temperatures and harmful chemicals to purify
- Glass and Ceramics need high temperatures and occasionally use heavy metals for coloring
- Semiconductors can contain toxic heavy metals
- Composites can involve toxic substances and high temperatures

What is "Materials Science"?

- The study of materials!
- Materials scientists...
 - Analyze the structure and properties of materials
 - Study how materials are manufactured and how well they perform
 - Design new materials
 - Decide which materials to use in certain products and how to make those materials

What makes a material sustainable/green?

- Made from renewable/biological resources
- Requires little energy to make
- Produces little waste when it is made
- Recyclable/biodegradable

Cradle to Cradle Design

https://www.youtube.com/watch?v=fP8PRA-OajU&t=6s

Polystyrene vs. Ecovative

POLYSTYRENE

- Derived from petroleum
- Non-biodegradable
- Made from styrene
 - Flammable liquid with a strong odor
 - Iron oxide catalyst and steam are needed to synthesize it
 - Short-term exposure can cause skin/eye irritation and nausea/vomiting
 - Long-term exposure can cause headaches and fatigue
 - Toxic if inhaled or swallowed
 - May affect reproductive system
 - May be linked to increased risk of some cancers

Open Loop

Landfill

Non-renewable Feedstock (petroleum)

Multi-step manufacturing process

Lifecycle of Polystyrene

Non-biodegrable and Limited recycling

Short-term use consumer product

How does polystyrene's lifecycle connect with green chemistry principles?

• Does NOT follow...

- Principle 1: waste prevention \rightarrow used styrofoam gets dumped in a landfill!
- Principle 2: atom economy → waste products during manufacturing are discarded
- Principle 3: minimize toxicity \rightarrow styrene monomer is toxic
- Principle 5: safer solvents \rightarrow manufacturing process uses toxic solvents
- Principle 6: energy efficiency \rightarrow manufacturing process uses high heat
- Principle 7: renewable feedstocks \rightarrow petroleum is non-renewable!
- Principle 10: design for degradation \rightarrow styrofoam is non-biodegradable

Polystyrene vs. Ecovative

ECOVATIVE

- Nontoxic
- Made from mycelium and agricultural waste
 - Mycelium = organic material found in mushrooms
 - Can be composted to help more crops grow → renewable resource
- Same applications as traditional polystyrene

Closed Loop

Feedstock from agricultural waste

Ecovative production process

Short-term use consumer product

Lifecycle of **Ecovative Materials**

Compost used to fertilize and grow renewable feedstock

Post-use Composting

How does the ecovative material's lifecycle connect with green chemistry principles?

• DOES follow...

- Principle 1: waste prevention \rightarrow discarded materials get composted
- Principle 2: atom economy \rightarrow starting materials fully incorporated into final product
- Principle 3: minimize toxicity \rightarrow materials are food-based!
- Principle 4: designing safer chemicals → same applications as polystyrene with minimal toxicity
- Principle 5: safer solvents \rightarrow manufacturing process uses water
- Principle 6: energy efficiency \rightarrow manufacturing is done at room temp
- Principle 7: renewable feedstocks \rightarrow agricultural waste
- Principle 10: design for degradation \rightarrow completely compostable

Sources - Content

- Davis, Frey, Sarquis, and Sarquis. <u>Modern Chemistry</u>. p. 145 and p. 826-827
- <u>http://www.essentialchemicalindustry.org/polymers/polyurethane.html</u>
- <u>http://www.sme.org/MEMagazine/Article.aspx?id=8589938417</u>
- http://www1.udel.edu/udaily/2014/dec/wool-epa-121113.html
- https://www.biooekonomie-bw.de/en/articles/dossiers/lignin-a-natural-resource-with-huge-potential/
- https://www.cancer.org/cancer/cancer-causes/formaldehyde.html
- <u>https://www.cdc.gov/niosh/topics/isocyanates/default.html</u>
- <u>https://cen.acs.org/articles/91/i50/Academic-Award-Richard-P-Wool.html</u>
- https://www.epa.gov/sites/production/files/2015-01/documents/k00002.pdf
- https://www.epa.gov/greenchemistry/presidential-green-chemistry-challenge-2013-academic-award
- <u>https://www.fastcompany.com/3023593/green-chemists-use-rocket-science-and-chicken-feathers-to-create-cow-less-leather</u>
- <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532765/</u>
- https://polyurethane.americanchemistry.com/polyurethanes/Introduction-to-Polyurethanes/Applications/Thermoplastic-Polyurethane/
- https://pubchem.ncbi.nlm.nih.gov/compound/styrene#section=Top
- https://pubchem.ncbi.nlm.nih.gov/compound/toluene#section=Top

Sources - Images

- http://energyconservationga.com/services/insulation/
- http://hscboards.wikia.com/wiki/Semiconductors
- https://inhabitat.com/ecouterre/renewable-eco-leather-made-from-plant-oils-is-a-fashion-game-changer/richard-wool-plant-eco-leather-1/
- http://jose.mulinohouse.co/paper/
- http://www.chaparraltech.net/sintered_metals.html
- http://www.paulcilwa.com/Content/Health/Obesity/2010-06-23.Heavy_Metal_Man/index.asp?T=6/23/2010
- http://www.preventcancernow.ca/what-exactly-is-green-chemistry
- https://clipartxtras.com/categories/view/2426cc9976df3346a6224f3be0bcbbd5b227ab49/boat-motor-clipart.html
- https://en.wikipedia.org/wiki/Recycling
- https://parawire.com/craft-store/bare-copper-wire
- https://store.moma.org/kitchen-dining/barware/duralex-glasses/124919-124919.html
- https://us.puma.com/en/us/pd/suede-classic%2B-sneakers/352634.html
- https://www.acs.org/content/acs/en/molecule-of-the-week/archive/l/lignin.html
- https://www.blackbough.co.uk/product/brickett-davda-dinner-plate-cobddp1/
- https://www.boston.com/culture/food/2014/10/21/dunkin-donuts-addresses-the-double-cup-iced-coffee-issueat-last
- https://www.chemistryviews.org/details/news/4804071/Reform_to_US_Toxic_Substances_Control_Act.html
- https://www.chemistryviews.org/details/news/881969/New_Way_To_Renewable_Chemical_Feedstock.html
- https://www.collective-evolution.com/2018/01/17/scientists-have-made-biodegradable-plastic-from-sugar-carbon-dioxide/
- https://www.energydigital.com/top-10/top-10-wind-turbine-suppliers
- https://www.homedepot.com/p/John-Deere-E100-42-in-17-5-HP-Gas-Automatic-Lawn-Tractor-BG21068/303128797
- https://www.lelong.com.my/recon-japan-mamachari-city-bicycle-gocycle-194232930-2018-07-Sale-Phtm
- https://www.printablesigns.net/preview/Danger_Carcinogen
- https://www.signs2safety.co.uk/products/Caution-high-temperature.html
- https://www.thoughtco.com/what-is-a-molecule-definition-examples-608506
- https://www.wcu.edu/learn/departments-schools-colleges/fpa/artdesign/undergraduate-programs/studioart/ceramics.aspx
- https://www.dezeen.com/2015/03/25/mushroom-materials-ecovative-modelling-kit-mycelium-designs-of-the-year-2015/