MIT Blossoms lesson
 on
 "Elasticity: studying how Solids change shape and size" Handouts for students

Sourish Chakravarty
Postdoctoral Associate
The Picower Institute for Learning and Memory
Massachusetts Institutes of Technology (MIT)
Email: sourish.chakravarty@gmail.com

Deformation under tensile load

Reaction Force

$$
F_{R} \longleftrightarrow F_{A}
$$

Applied Force

Deformation under compressive load

Reaction Force
F_{R}
\longrightarrow $\begin{gathered}\text { Applied Force } \\ F_{A}\end{gathered}$

General case: $\quad F_{R} \propto \delta^{n}$

$$
\Rightarrow F_{R}=k \delta^{n}
$$

k : Spring Constant (a measure of stiffness of the spring)

Special case: $n=1$
$\Rightarrow F_{R}=k \delta \quad \rightarrow$ Hooke's law (linear spring)

From Newton's $2^{\text {nd }}$ Law of motion,

$$
F_{R}-F_{A}=\text { (mass)(acceleration) }
$$

When acceleration is absent and/or mass is negligible,

$$
k \delta^{n}-F_{A}=0
$$

Or, $F_{A}=k \delta^{n}$

Force vs. Deformation curve

$$
\text { Slope of curve }=k=\frac{h}{b} \rightarrow \text { measure of stiffness of the material }
$$

Linear elasticity \Rightarrow Constant slopes
Example: Most materials under small deformation relative to undeformed configuration

Change in length, δ

Force vs. Deformation curves for Linear and Nonlinear Elasticity

Example of Activity 2

(Controlled extension of rubber band)

Loading sequence number, n	Mass (kg)	Reading from ruler, Y (metre)	Extension, $\mathrm{d}=\mathrm{Y}-\mathrm{Y}_{0}$ (metre)	Force = Mass*9.81 (newton)
0	0	Y_{0}	0	0
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				

Loading sequence number, n	Mass (kg)	Reading from ruler, Y (metre)	Extension, $\mathrm{d}=\mathrm{Y}-\mathrm{Y}_{0}$ (metre)	Force = Mass*9.81 (newton)

Example of Activity 2: Controlled extension of rubber band

Force vs. Deformation plot for rubber band tensile test

Example of Activity 3

(Launching match-stick using rubber-band as a projectile)

Force vs. Deformation plot for rubber band tensile test

Potential energy stored in the rubber band for extension of z metre (area under the Force vs. Deformation curve from $d=0$ up to z metre)

Total elastic potential energy stored = area under Force vs. Deformation curve

Change in length, δ

Change in length, δ

$\#$	Range, R (metre)
1	
2	
3	
4	
5	
Median	

Kinetic energy of projectile at launch when rubber band is released

Assuming: (1) Projectile launched horizontally, and (2) No air resistance,

Kinetic energy of projectile $=($ Mass of projectile $)(\text { Horizontal velocity of projectile at launch })^{2} / 2$
$(\text { Horizontal velocity of projectile at launch })^{2}=\frac{(\text { Range of projectile })^{2}(\text { Acceleration due to gravity) }}{2(\text { Elevation of launch point) }}$

$$
\frac{\text { Kinetic Energy of Projectile at launch }}{\text { Potential Energy stored in Rubber Band }}
$$

Activity 3: Launching a match-stick using the rubber-band as a projectile

- Range, R (median of range values from 5 repetitions of projectile launch)
- Elevation of launch, H
- Acceleration due to gravity, $g=9.81 \mathrm{~m} / \mathrm{sec}^{2}$
- Mass of projectile, M
- Velocity of launch of projectile, $\mathrm{v}=\mathrm{R} \sqrt{g / 2 H}$
- Kinetic energy of projectile at launch, $\mathrm{KE}^{(\mathrm{Pr})}=\mathrm{Mv}^{2} / 2$
- Potential energy stored in rubber-band for z metre of extension, $\mathrm{PE}^{(\mathrm{Rb})}$ in Joule
- Ratio $=\mathbf{K E}^{(\mathbf{P r})} / \mathbf{P E}{ }^{(\mathrm{Rb})}=$?

