MIT Blossoms lesson on "Elasticity: studying how Solids change shape and size" <u>Handouts for students</u>

Sourish Chakravarty Postdoctoral Associate The Picower Institute for Learning and Memory Massachusetts Institutes of Technology (MIT) Email: <u>sourish.chakravarty@gmail.com</u>

Spring Point mass / / / Undeformed spring X

Deformation under tensile load

Deformation under compressive load

General case: $F_R \propto \delta^n$

$$\Rightarrow$$
 $F_R = k\delta^n$

k : Spring Constant (a measure of stiffness of the spring)

Special case: n = 1

$$\Rightarrow F_R = k\delta \rightarrow$$
 Hooke's law (linear spring)

From Newton's 2nd Law of motion,

$$F_R - F_A$$
= (mass)(acceleration)

When acceleration is absent and/or mass is negligible,

$$k\delta^n - F_A = 0$$

Or, $F_A = k\delta^n$

Force vs. Deformation curve

Change in length, δ

Force vs. Deformation curves for Linear and Nonlinear Elasticity

Change in length, δ

Example of Activity 2

(Controlled extension of rubber band)

Beginning of experiment

00

0

12

13

14

15

16 17

19

20 21

10-

3

18

1 9

G

100 s

CRAFTSMAN

More coins added

1 9

0

Nº.

cu

сл

6

18

CRAFTSMAN

G

During experiment

Loading sequence number, n	Mass (kg)	Reading from ruler, Y (metre)	Extension, d= Y – Y ₀ (metre)	Force = Mass*9.81 (newton)
0	0	Υ ₀	0	0
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				

Loading sequence number, n	Mass (kg)	Reading from ruler, Y (metre)	Extension, d= Y – Y _o (metre)	Force = Mass*9.81 (newton)

Example of Activity 2: Controlled extension of rubber band

Example of Activity 3

(Launching match-stick using rubber-band as a projectile)

Force vs. Deformation plot for rubber band tensile test

Potential energy stored in the rubber band for extension of z metre (area under the Force vs. Deformation curve from d= 0 up to z metre)

Total elastic potential energy stored = area under Force vs. Deformation curve

Applied Force, F_A

Approximating the area under the Force VS. Deformation curve as a sum of areas of multiple nonoverlapping trapezia/trapezoids

Applied Force,

Change in length, δ

Change in length, δ

After rubber-band is stretched by 2 inch \rightarrow Potential energy stored in rubber band

Rubber-band is released \rightarrow Projectile is launched (part of energy released is converted to kinetic energy of projectile) \rightarrow Projectile hits ground.

Point of first contact with ground

#	Range, R (metre)
1	
2	
3	
4	
5	
Median	

Kinetic energy of projectile at launch when rubber band is released

Assuming: (1) Projectile launched horizontally, and (2) No air resistance,

Kinetic energy of projectile = (Mass of projectile)(Horizontal velocity of projectile at launch)²/2

 $(Horizontal velocity of projectile at launch)^{2} = \frac{(Range of projectile)^{2}(Acceleration due to gravity)}{2(Elevation of launch point)}$

```
Kinetic Energy of Projectile at launchPotential Energy stored in Rubber Band
```

Activity 3: Launching a match-stick using the rubber-band as a projectile

- Range, R (median of range values from 5 repetitions of projectile launch)
- Elevation of launch, H
- Acceleration due to gravity, $g = 9.81 \text{ m/sec}^2$
- Mass of projectile, M
- Velocity of launch of projectile, $v = R\sqrt{g/2H}$
- Kinetic energy of projectile at launch, $KE^{(Pr)} = Mv^2/2$
- Potential energy stored in rubber-band for z metre of extension, ${\rm PE}^{\rm (Rb)}$ in Joule
- <u>Ratio = $KE^{(Pr)}/PE^{(Rb)}$ = ?</u>