Rational numbers vs. Irrational numbers

by

Nabil Nassif, PhD

in cooperation with

Sophie Moufawad, MS

and the assistance of Ghina El Jannoun, MS and Dania Sheaib, MS

American University of Beirut, Lebanon

An MIT BLOSSOMS Module
August, 2012
“The ultimate Nature of Reality is Numbers”

A quote from Pythagoras (570-495 BC)
“Wherever there is number, there is beauty”
A quote from Proclus (412-485 AD)
Traditional Clock plus Circumference

1 min = $\frac{1}{60}$ of 1 hour

Circumference length is π

Diameter 1

Rational numbers vs. Irrational numbers
An Electronic Clock plus a Calendar

15:02:09
19/09/2005

Hour : Minutes : Seconds
dd/mm/yyyy

1 month = \frac{1}{12} \text{ of 1 year}

1 day = \frac{1}{365} \text{ of 1 year (normally)}

1 hour = \frac{1}{24} \text{ of 1 day}

1 min = \frac{1}{60} \text{ of 1 hour}

1 sec = \frac{1}{60} \text{ of 1 min}

Rational numbers vs. Irrational numbers
TSquares: Use of Pythagoras Theorem
Golden number φ and Golden rectangle

Roots of $x^2 - x - 1 = 0$ are $\varphi = \frac{1 + \sqrt{5}}{2}$ and $-\frac{1}{\varphi} = \frac{1 - \sqrt{5}}{2}$
Golden number φ and Inner Golden spiral

Drawn with up to 10 golden rectangles
Outer Golden spiral and L. Fibonacci (1175-1250) sequence

\[F = \{1, 1, 2, 3, 5, 8, 13, \ldots, f_n, \ldots\} : f_n = f_{n-1} + f_{n-2}, \ n \geq 3 \]

\[f_n = \frac{1}{\sqrt{5}} \left(\varphi^n + (-1)^{n-1} \frac{1}{\varphi^n} \right) \]
Euler’s Number \(e \)

\[
\begin{align*}
\text{s}_3 &= 1 + \frac{1}{1!} + \frac{1}{2} + \frac{1}{3!} = 2.6666\ldots66\ldots, \\
\text{s}_4 &= 1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} = 2.70833333\ldots333\ldots, \\
\text{s}_5 &= 1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} = 2.7166666666\ldots66\ldots.
\end{align*}
\]

\[
\lim_{n \to \infty} \left\{ 1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \ldots + \frac{1}{n!} \right\} = e = 2.718281828459\ldots\ldots
\]

\(e \) is an irrational number discovered by L. Euler (1707-1783), a limit of a sequence of rational numbers.
Definition of Rational and Irrational numbers

- A **Rational number** r is defined as:

$$ r = \frac{m}{n} $$

where m and n are integers with $n \neq 0$.

- Otherwise, if a number cannot be put in the form of a ratio of 2 integers, it is said to be an **Irrational number**.
Distinguishing between rational and irrational numbers

Any number x, (rational or irrational) can be written as:

$$x = I + f$$
Distinguishing between rational and irrational numbers

Any number x, (rational or irrational) can be written as:

$$x = I + f$$

- I is its integral part;
Distinguishing between rational and irrational numbers

Any number \(x \), (rational or irrational) can be written as:

\[x = I + f \]

- \(I \) is its integral part;
- \(0 \leq f < 1 \) is its fractional part.
Examples

• \(\frac{48}{25} = 1 + 0.92\)

• \(\frac{8}{3} = \)

• \(\frac{17}{7} = \)

• \(\sqrt{2} = \)

• \(\pi = \)

• \(\varphi = \frac{1 + \sqrt{5}}{2} = \)

Rational numbers vs. Irrational numbers
Answers to Examples

- \(\frac{48}{25} = 1 + 0.92 \)
- \(\frac{8}{3} = 2 + 0.66666666..... \)
- \(\frac{17}{7} = 2 + 0.4285714285714..... \)
- \(\sqrt{2} = 1 + 0.4142135623731..... \)
- \(\pi = 3 + 0.14159265358979..... \)
- \(\varphi = 1 + 0.6180339887499...... \)
Distinguishing between rational and irrational numbers
Distinguishing between rational and irrational numbers

1. As \(x = I + f, \) \(I: \) Integer; \(0 < f < 1: \) Fractional.
Distinguishing between rational and irrational numbers

1. As $x = I + f$, I: Integer; $0 < f < 1$: Fractional.

2. → Distinction between rational and irrational can be restricted to fraction numbers f between $0 < f < 1$.

Rational numbers vs. Irrational numbers
Position of the Problem

\[R = \{ \text{Rational Numbers } f, \ 0 < f < 1 \} \]
\[I = \{ \text{Irrational Numbers } f, \ 0 < f < 1 \} \]

The segment following segment \(S \) represents all numbers between 0 and 1:

\[S = R \cup I \text{ with } R \cap I = \emptyset \text{ empty set.} \]

- **Basic Question:**
Position of the Problem

\[\mathcal{R} = \{ \text{Rational Numbers } f, 0 < f < 1 \} \]

\[\mathcal{I} = \{ \text{Irrational Numbers } f, 0 < f < 1 \} \]

The segment following segment \(S \) represents all numbers between 0 and 1:

\[S = \mathcal{R} \cup \mathcal{I} \text{ with } \mathcal{R} \cap \mathcal{I} = \emptyset \text{ empty set.} \]

- **Basic Question:**
- If we pick a number \(f \) at random between 0 and 1, what is the probability that this number be rational: \(f \in \mathcal{R} \)?
The Decimal Representation of a number

Any number $f : 0 < f < 1$ has the following decimal representation:

\[
\text{Notation} \quad f \quad \overset{\equiv}{=} \quad 0.d_1d_2d_3\ldots d_k\ldots
\]

\[d_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\]

\[f = d_1\left(\frac{1}{10}\right) + d_2\left(\frac{1}{100}\right) + d_3\left(\frac{1}{1000}\right) + \ldots + d_k\left(\frac{1}{10^k}\right) + \ldots\]

with at least one of the d_i’s $\neq 0$.

Rational numbers vs. Irrational numbers
Main Theorem about Rational Numbers

The number $0 < f < 1$ is rational, that is

$$f = \frac{m}{n}, \ m < n,$$

if and only if

its decimal representation:

$$f = 0.d_1d_2d_3\ldots d_k\ldots$$

$$= d_1\left(\frac{1}{10}\right) + d_2\left(\frac{1}{10^2}\right) + d_3\left(\frac{1}{10^3}\right) + \ldots + d_k\left(\frac{1}{10^k}\right) + \ldots$$

takes one of the following forms:
Main Theorem about Rational Numbers

The number $0 < f < 1$ is rational, that is

$$f = \frac{m}{n}, \ m < n,$$

if and only if

its decimal representation:

$$f = 0.d_1d_2d_3...d_k...$$

$$= d_1\left(\frac{1}{10}\right) + d_2\left(\frac{1}{10^2}\right) + d_3\left(\frac{1}{10^3}\right) + ... + d_k\left(\frac{1}{10^k}\right) + ...$$

takes one of the following forms:

f is either **Terminating**: $d_i = 0$ for $i > l \geq 1$
Main Theorem about Rational Numbers

The number $0 < f < 1$ is rational, that is $f = \frac{m}{n}$, $m < n$, if and only if its decimal representation:

$f = 0.d_1d_2d_3...d_k...$

$= d_1\left(\frac{1}{10}\right) + d_2\left(\frac{1}{10^2}\right) + d_3\left(\frac{1}{10^3}\right) + ... + d_k\left(\frac{1}{10^k}\right) + ...$

takes one of the following forms:

- f is either **Terminating**: $d_i = 0$ for $i > l \geq 1$
- or f is **Non-Terminating** with a repeating pattern.
Proof of the Main Theorem about Rational Numbers

Theorem

The number $0 < f < 1$ is rational, that is $f = \frac{m}{n}$, $m < n$, if and only if its decimal representation:

$$f = 0.d_1d_2d_3...d_k...$$

is either **Terminating** ($d_i = 0$ for $i > l \geq 1$) or is **Non-Terminating** with a repeating pattern.
Proof of the only if part of Main Theorem about Rational Numbers

Proof.
Proof of the only if part of Main Theorem about Rational Numbers

Proof.

1. If f has a terminating decimal representation, then f is rational.
Proof of the only if part of Main Theorem about Rational Numbers

Proof.

1. If f has a terminating decimal representation, then f is rational.

2. If f has a non-terminating decimal representation with a repeating pattern, then f is rational.
Proof of the first Statement of only if part

Statement 1: If \(f \) has a terminating decimal representation, then \(f \) is rational.
Consider:

\[
f = d_1 \left(\frac{1}{10} \right) + d_2 \left(\frac{1}{100} \right) + d_3 \left(\frac{1}{1000} \right) + \ldots + d_k \left(\frac{1}{10^k} \right)
\]

then:

\[
10^k f = d_1 10^{k-1} + d_2 10^{k-2} + \ldots + d_k.
\]

implying:

\[
f = \frac{m}{10^k} \quad \text{with} \quad m = d_1 10^{k-1} + d_2 10^{k-2} + \ldots + d_k
\]
Example
Example

\[0.625 = \frac{625}{1,000} = \frac{125 \times 5}{125 \times 8} \]
Example

\[0.625 = \frac{625}{1,000} = \frac{125 \times 5}{125 \times 8}\]

\[0.625 = \text{after simplification: } \frac{5}{8}\]
Proof of the second Statement of only if part

Statement 2: If \(f \) has a non terminating decimal representation with repeating pattern, then \(f \) is rational. Without loss of generality, consider:

\[
f = 0.d_1 d_2 d_3 \ldots d_k = 0.d_1 d_2 d_3 \ldots d_k d_1 d_2 d_3 \ldots d_k d_1 d_2 d_3 \ldots d_k \ldots
\]

\[
f = d_1 \left(\frac{1}{10} \right) + d_2 \left(\frac{1}{100} \right) + d_3 \left(\frac{1}{1000} \right) + \ldots + d_k \left(\frac{1}{10^k} \right) + \frac{1}{10^k} \left[d_1 \left(\frac{1}{10} \right) + d_2 \left(\frac{1}{100} \right) + d_3 \left(\frac{1}{1000} \right) + \ldots + d_k \left(\frac{1}{10^k} \right) \right] + \frac{1}{10^{2k}} [..].
\]

then:

\[
10^k f = d_1 10^{k-1} + d_2 10^{k-2} + \ldots + d_k + f.
\]

implying:

\[
(10^k - 1) f = m \iff f = \frac{m}{n}
\]

Rational numbers vs. Irrational numbers
Example on Proof of the second Statement

\[
f = 0.\overline{428571} = 0.428571428571428571... \]

\[
f = 4 \left(\frac{1}{10} \right) + 2 \left(\frac{1}{100} \right) + 8 \left(\frac{1}{10^3} \right) + 5 \left(\frac{1}{10^4} \right) + 7 \left(\frac{1}{10^5} \right) + 1 \frac{1}{10^6} + \frac{1}{10^6} (f) \]

\[
10^6 \times f = 4 \times 10^5 + 2 \times 10^4 + 8 \times 10^3 + 5 \times 10^2 + 7 \times 10 + 1 + f \]

\[
(10^6 - 1) \times f = 428,571 \]

\[
f = \frac{428,571}{10^6 - 1} = \frac{428,571}{999,999} \]

After simplification:

\[
f = \frac{428,571}{999,999} = \frac{3 \times 142,857}{7 \times 142,857} = \frac{3}{7} \]
Proof of the “IF PART”

\[f = 0.d_1d_2d_3...d_k... \in \mathcal{R} \]

\[\Downarrow \]

\begin{itemize}
 \item \(f \) has a terminating representation,
 \item or
 \item \(f \) has a non-terminating representation with a repeating pattern.
\end{itemize}
Tools for Proof of the if part of Main Theorem about Rational Numbers

Two tools to prove this result:
Tools for Proof of the if part of Main Theorem about Rational Numbers

Two tools to prove this result:

1. Euclidean Division Theorem
Tools for Proof of the if part of Main Theorem about Rational Numbers

Two tools to prove this result:

1. Euclidean Division Theorem
2. Pigeon Hole Principle
First Tool: Euclidean Division Theorem

\(M \geq 0 \) and \(N \geq 1 \).

Then, there exists a unique pair of integers \((d, r)\), such that:

\[
M = d \times N + r,
\]
or equivalently:

\[
\frac{M}{N} = d + \frac{r}{N}
\]

\(d \geq 0 \) is the quotient of the division, and \(r \in \{0, 1, \ldots, N - 1\} \) is the remainder.
Application of Euclidean Division Theorem on f, $0 < f < 1$

\[f = \frac{m}{n} = d_1 \left(\frac{1}{10} \right) + d_2 \left(\frac{1}{100} \right) + d_3 \left(\frac{1}{1000} \right) + \ldots + d_k \left(\frac{1}{10^k} \right) + \ldots \]

\[\frac{10m}{n} = d_1 + f_1 \text{ where } f_1 = d_2 \left(\frac{1}{10} \right) + d_3 \left(\frac{1}{100} \right) + \ldots + d_k \left(\frac{1}{10^{k-1}} \right) + \ldots \]

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10m = d_1 n + r_1$</td>
<td>$\frac{10m}{n} = d_1 + f_1$</td>
</tr>
<tr>
<td>$10r_1 = d_2 n + r_2$</td>
<td>$f_1 = \frac{r_1}{n} = d_2 \left(\frac{1}{10} \right) + \ldots$</td>
</tr>
<tr>
<td>$10r_{k-1} = d_k n + r_k$</td>
<td>$\frac{10r_{k-1}}{n} = d_k + f_k$</td>
</tr>
<tr>
<td>$f_k = \frac{r_k}{n} = d_{k+1} \left(\frac{1}{10} \right) + \ldots$</td>
<td></td>
</tr>
</tbody>
</table>

Each of $r_1, r_2, \ldots, r_k, \ldots \in \{0, 1, \ldots, n - 1\}$
Application of Euclidean Division Theorem on \(f, \ 0 < f < 1 \)

\[
f = \frac{m}{n} = d_1 \left(\frac{1}{10} \right) + d_2 \left(\frac{1}{100} \right) + d_3 \left(\frac{1}{1000} \right) + \ldots + d_k \left(\frac{1}{10^k} \right) + \ldots
\]

\[
\frac{10m}{n} = d_1 + f_1 \text{ where } f_1 = d_2 \left(\frac{1}{10} \right) + d_3 \left(\frac{1}{100} \right) + \ldots + d_k \left(\frac{1}{10^{k-1}} \right) + \ldots
\]

\[
10m = d_1 n + r_1 \quad \frac{10m}{n} = d_1 + f_1 \quad f_1 = \frac{r_1}{n} = d_2 \left(\frac{1}{10} \right) + \ldots
\]

\[
10r_1 = d_2 n + r_2 \quad \frac{10r_1}{n} = d_2 + f_2 \quad f_2 = \frac{r_2}{n} = d_3 \left(\frac{1}{10} \right) + \ldots
\]

\[
\vdots
\]

\[
10r_{k-1} = d_k n + r_k \quad \frac{10r_{k-1}}{n} = d_k + f_k \quad f_k = \frac{r_k}{n} = d_{k+1} \left(\frac{1}{10} \right) + \ldots
\]

\[
\vdots
\]

Each of \(r_1, r_2, \ldots, r_k, \ldots \) \in \{0, 1, \ldots, n - 1\}
The Algorithm of Successive Multiplications by 10 and Divisions by n

- Can this procedure terminate?
The Algorithm of Successive Multiplications by 10 and Divisions by n

- Can this procedure terminate?
- yes, when $r_k = 0$.
The Algorithm of Successive Multiplications by 10 and Divisions by n

- Can this procedure terminate?
- Yes, when $r_k = 0$.
- If not, $\{d_i, r_i\}$ starts repeating.
Proof of Terminating Sequences using Successive Multiplications and Divisions

\[
\frac{10m}{n} = d_1 + d_2\left(\frac{1}{10}\right) + d_3\left(\frac{1}{100}\right) + \ldots + d_k\left(\frac{1}{10^{k-1}}\right) + \ldots
\]

\[
10m = d_1 n + r_1 \quad \frac{10m}{n} = d_1 + f_1 \quad f_1 = \frac{r_1}{n} = d_1 + d_2\left(\frac{1}{10}\right) + \ldots
\]

\[
10r_1 = d_2 n + r_2 \quad \frac{10r_1}{n} = d_2 + f_2 \quad f_2 = \frac{r_2}{n} = d_2 + d_3\left(\frac{1}{10}\right) + \ldots
\]

\[
10r_{k-1} = d_k n + 0 \quad \frac{10r_{k-1}}{n} = d_k + f_k \quad f_k = 0
\]

Algorithm stops at \(k : r_k = 0 \) implies:

\(r_{k+1} = r_{k+2} = \ldots = 0 \) and \(d_{k+1} = d_{k+2} = \ldots = 0 \).

\[
\frac{m}{n} = 0.d_1d_2\ldots d_k.
\]
Examples of fractions with terminating decimal representation

1. \(\frac{m}{n} = \frac{1}{4}, \ m = 1, \ n = 4 \)

\[
10 \times 1 = 2 \times 4 + 2 \iff \frac{10 \times 1}{4} = 2 + \frac{2}{4}, \ (d_1 = 2, \ r_1 = 2) \\
10 \times 2 = 5 \times 4 + 0 \iff \frac{10 \times 2}{4} = 5 + \frac{0}{4}, \ (d_2 = 5, \ r_2 = 0)
\]

\(r_2 = 0 \) implies \(\frac{1}{4} = 0.d_1d_2 = 0.25 \)
Examples of fractions with terminating decimal representation

2. \(\frac{m}{n} = \frac{5}{8}, m = 5, n = 8 \)
Examples of fractions with terminating decimal representation

2. \(\frac{m}{n} = \frac{5}{8}, m = 5, n = 8 \)

\[
\begin{align*}
10 \times 5 &= 6 \times 8 + 2 \iff \frac{10 \times 5}{8} = 6 + \frac{2}{8}, (d_1 = 6, r_1 = 2) \\
10 \times 2 &= 2 \times 8 + 4 \iff \frac{10 \times 2}{8} = 2 + \frac{4}{8}, (d_2 = 2, r_2 = 4) \\
10 \times 4 &= 5 \times 8 + 0 \iff \frac{10 \times 4}{8} = 5 + \frac{0}{8}, (d_3 = 5, r_3 = 0)
\end{align*}
\]

\(r_3 = 0 \) implies \(\frac{5}{8} = 0.d_1d_2d_3 = 0.625 \)
Successive Multiplications and Divisions: Non Terminating Representations

\[\frac{10m}{n} = d_1 + d_2 \left(\frac{1}{10} \right) + d_3 \left(\frac{1}{100} \right) + \ldots + d_k \left(\frac{1}{10^{k-1}} \right) + \ldots \]

Each of \(r_1, r_2, \ldots, r_k, \ldots \in \{1, \ldots, n - 1\} \) and \(r_i \neq 0 \) for all \(i \).
Second tool: Use of Pigeon hole Principle in proving that Infinite representations for $\frac{m}{n}$ have repeating patterns

Statement:

If you have n pigeons to occupy $n - 1$ holes:

Then **at least 2 pigeons must occupy the same hole.**
Example 10 pigeons and 9 pigeon holes
Example of 3 pigeons and 2 pigeon holes
Solution of example of 3 pigeons and 2 pigeon holes

OR

Rational numbers vs. Irrational numbers
Application of Pigeonhole Principle for non-terminating sequences

\[
10m = d_1 n + r_1 \quad \Leftrightarrow \quad \frac{10m}{n} = d_1 + \frac{r_1}{n}
\]
\[
10r_1 = d_2 n + r_2 \quad \Leftrightarrow \quad \frac{10r_1}{n} = d_2 + \frac{r_2}{n}
\]
\[
\vdots
\]
\[
10r_{k-1} = d_k n + r_k \quad \Leftrightarrow \quad \frac{10r_{k-1}}{n} = d_k + \frac{r_k}{n}
\]
\[
\vdots
\]

\[
r_1 = \quad r_2 = \quad \ldots \ldots \quad r_{n-1} = \quad r_n =
\]

\[
1 \quad 2 \quad 3 \quad n-3 \quad n-2 \quad n-1
\]

By Pigeonhole principle: At least two remainders \(r_j, r_k, \)
\[
1 \leq j < k \leq n: \quad r_j = r_k.
\]
Applying the Pigeon hole Principle to obtain repeating sequences

Let \{j, k\} be the first pair, such that:
1 ≤ j < k ≤ n and \(r_j = r_k\) then:

\[10r_j = d_{j+1}n + r_{j+1} \quad \text{and} \quad 10r_k = d_{k+1}n + r_{k+1}\]

\[\downarrow\]

\[d_{j+1} = d_{k+1} \quad \text{and} \quad r_{j+1} = r_{k+1}…\]

More generally,

\[d_{j+l} = d_{k+l} \quad \text{and} \quad r_{j+l} = r_{k+l}, \quad 1 ≤ l ≤ k - j.\]

and therefore by recurrence:

\[\frac{m}{n} = 0.d_1d_2…d_j\underbrace{d_{j+1}…d_k}_{}\]
Example

\[f = \frac{m}{n} = \frac{6}{7} \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 \times 6 = 8 \times 7 + 4</td>
<td>d_1 = 8</td>
<td>r_1 = 4</td>
</tr>
<tr>
<td>10 \times 4 = 5 \times 7 + 5</td>
<td>d_2 = 5</td>
<td>r_2 = 5</td>
</tr>
<tr>
<td>10 \times 5 = 7 \times 7 + 1</td>
<td>d_3 = 7</td>
<td>r_3 = 1</td>
</tr>
<tr>
<td>10 \times 1 = 1 \times 7 + 3</td>
<td>d_4 = 1</td>
<td>r_4 = 3</td>
</tr>
<tr>
<td>10 \times 3 = 4 \times 7 + 2</td>
<td>d_5 = 4</td>
<td>r_5 = 2</td>
</tr>
<tr>
<td>10 \times 2 = 2 \times 7 + 6</td>
<td>d_6 = 2</td>
<td>r_6 = 6</td>
</tr>
<tr>
<td>10 \times 6 = 8 \times 7 + 4</td>
<td>d_7 = 8</td>
<td>r_7 = 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each of \(r_1, r_2, r_3, r_4, r_5, \ldots \in \{1, 2, 3, 4, 5, 6\} \).
Example \(f = \frac{m}{n} = \frac{6}{7} \)

\(r_1 = 4 \), \(r_2 = 5 \), \(r_3 = 1 \), \(r_4 = 3 \), \(r_5 = 2 \), \(r_6 = 6 \), \(r_7 = 4 \)

\(\{1, 7\} \) is the first pair, such that \(r_1 = r_7 \) then:

\[
\frac{6}{7} = 0.d_1d_2d_3d_4d_5d_6d_7 = 0.8571428
\]

Length of pattern is 6.
Exercise

Find the decimal representation of

\[f = \frac{m}{n} = \frac{2}{3} \]

using Successive Multiplications and Divisions
Solution of the exercise \(f = \frac{m}{n} = \frac{2}{3} \)

<table>
<thead>
<tr>
<th>10 \times 2 = 6 \times 3 + 2</th>
<th>d_1 = 6 \quad r_1 = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 \times 2 = 6 \times 3 + 2</td>
<td>d_2 = 6 \quad r_2 = 2</td>
</tr>
<tr>
<td>10 \times 2 = 6 \times 3 + 2</td>
<td>d_3 = 6 \quad r_3 = 2</td>
</tr>
<tr>
<td>\vdots \quad \vdots \quad \vdots</td>
<td>\quad \vdots \quad \vdots \quad \vdots</td>
</tr>
</tbody>
</table>

\{1, 2\} is the first pair, such that \(r_1 = r_2 \) and therefore:

\[
\frac{2}{3} = 0.d_1\overline{d_2} = 0.6\overline{6}
\]

Length of pattern is 1

Rational numbers vs. Irrational numbers
Answer to the Main question of Module

\[\mathcal{R} = \{ \text{Rational Numbers} f, \ 0 < f < 1 \} \]
\[\mathcal{I} = \{ \text{Irrational Numbers} f, \ 0 < f < 1 \} \]
\[S = \mathcal{R} \cup \mathcal{I} \text{ with } \mathcal{R} \cap \mathcal{I} = \emptyset \text{ empty set.} \]

Question: If we pick at random a number \(f \) between 0 and 1, what is the probability that this number be rational: \(f \in \mathcal{R} \)?
Both \mathcal{R} and \mathcal{I} are **Infinite sets**.
Both \mathcal{R} and \mathcal{I} are **Infinite sets**.

- $|\mathcal{R}| = \infty_1$ and $|\mathcal{I}| = \infty_2$

Rational numbers vs. Irrational numbers
- Both \mathcal{R} and \mathcal{I} are **Infinite sets**.
- $|\mathcal{R}| = \infty_1$ and $|\mathcal{I}| = \infty_2$
- Which one of these two infinities is bigger?

Rational numbers vs. Irrational numbers
Both \mathcal{R} and \mathcal{I} are **Infinite sets**.

$|\mathcal{R}| = \infty_1$ and $|\mathcal{I}| = \infty_2$

Which one of these two infinities is bigger?

If $f \in \mathcal{R}$:
Both \mathcal{R} and \mathcal{I} are **Infinite sets**.

- $|\mathcal{R}| = \infty_1$ and $|\mathcal{I}| = \infty_2$

Which one of these two infinities is bigger?

- If $f \in \mathcal{R}$:
 - $f = 0.d_1d_2..d_k$ or
Both \mathcal{R} and \mathcal{I} are **Infinite sets**.

- $|\mathcal{R}| = \infty_1$ and $|\mathcal{I}| = \infty_2$

Which one of these two infinities is bigger?

If $f \in \mathcal{R}$:

- $f = 0.d_1d_2..d_k$ or
- $f = 0.d_1d_2..d_{l-1}d_l...d_k$.

Rational numbers vs. Irrational numbers
Both \mathcal{R} and \mathcal{I} are **Infinite sets**.

- $|\mathcal{R}| = \infty_1$ and $|\mathcal{I}| = \infty_2$
- Which one of these two infinities is bigger?
- If $f \in \mathcal{R}$:
 - $f = 0.d_1d_2..d_k$ or
 - $f = 0.d_1d_2..d_{l-1}d_l...d_k$.
- While if $f \in \mathcal{I}$: $f = 0.d_1d_2..d_k....$ (infinite representation with no specific pattern).
Both \(\mathcal{R} \) and \(\mathcal{I} \) are **Infinite sets**.

- \(|\mathcal{R}| = \infty_1 \) and \(|\mathcal{I}| = \infty_2 \)

Which one of these two infinities is bigger?

- If \(f \in \mathcal{R} \):
 - \(f = 0.d_1d_2...d_k \) or
 - \(f = 0.d_1d_2...d_{l-1}d_l...d_k \).

- While if \(f \in \mathcal{I} \): \(f = 0.d_1d_2...d_k... \) (infinite representation with no specific pattern).

Hence, “much more” ways to obtain elements in \(\mathcal{I} \) than in \(\mathcal{R} \).
\(\mathbb{R} \) is “countably infinite”
\(R \) is “countably infinite”

To understand this concept, define for \(n = 1, 2, 3, 4, \ldots \):

\[
R_n = \left\{ \frac{m}{n + 1} \mid m = 1, 2, \ldots, n, \gcd(m, n + 1) = 1 \right\}.
\]
\mathcal{R} is “countably infinite”

To understand this concept, define for $n = 1, 2, 3, 4, \ldots$:

$$\mathcal{R}_n = \left\{ \frac{m}{n + 1} \middle| m = 1, 2, \ldots, n, \gcd(m, n + 1) = 1 \right\}.$$

Examples of \mathcal{R}_n:

$n = 1: \mathcal{R}_1 = \left\{ \frac{1}{2} \right\} = \{r_1\}$

$n = 2: \mathcal{R}_2 = \left\{ \frac{1}{3}, \frac{2}{3} \right\} = \{r_2, r_3\}$

$n = 3: \mathcal{R}_3 = \left\{ \frac{1}{4}, \frac{3}{4} \right\} = \{r_4, r_5\}$

$n = 4: \mathcal{R}_4 = \left\{ \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \right\} = \{r_6, r_7, r_8, r_9\}$
\(\mathcal{R} \) is “countably infinite”

- To understand this concept, define for \(n = 1, 2, 3, 4, \ldots \):

\[
\mathcal{R}_n = \left\{ \frac{m}{n+1} \mid m = 1, 2, \ldots, n, \ \gcd(m, n+1) = 1 \right\}.
\]

- Examples of \(\mathcal{R}_n \):
 - \(n = 1 \) : \(\mathcal{R}_1 = \left\{ \frac{1}{2} \right\} = \{ r_1 \} \)
 - \(n = 2 \) : \(\mathcal{R}_2 = \left\{ \frac{1}{3}, \frac{2}{3} \right\} = \{ r_2, r_3 \} \)
 - \(n = 3 \) : \(\mathcal{R}_3 = \left\{ \frac{1}{4}, \frac{3}{4} \right\} = \{ r_4, r_5 \} \)
 - \(n = 4 \) : \(\mathcal{R}_4 = \left\{ \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \right\} = \{ r_6, r_7, r_8, r_9 \} \)
 - Check \(n = 5 \) : \(\mathcal{R}_5 = \left\{ \frac{1}{6}, ? \right\} \)
\[\mathcal{R}\] is “countably infinite”

- To understand this concept, define for \(n = 1, 2, 3, 4, \ldots:\)

\[\mathcal{R}_n = \left\{ \frac{m}{n+1} \mid m = 1, 2, \ldots, n, \gcd(m, n+1) = 1 \right\}.\]

- Examples of \(\mathcal{R}_n:\)
 - \(n = 1:\) \(\mathcal{R}_1 = \{\frac{1}{2}\} = \{r_1\}\)
 - \(n = 2:\) \(\mathcal{R}_2 = \{\frac{1}{3}, \frac{2}{3}\} = \{r_2, r_3\}\)
 - \(n = 3:\) \(\mathcal{R}_3 = \{\frac{1}{4}, \frac{3}{4}\} = \{r_4, r_5\}\)
 - \(n = 4:\) \(\mathcal{R}_4 = \{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\} = \{r_6, r_7, r_8, r_9\}\)

- Check \(n = 5:\) \(\mathcal{R}_5 = \{\frac{1}{6}, ?\}\)

- \(\mathcal{R}_5 = \{\frac{1}{6}, \frac{5}{6}\} = \{r_{10}, r_{11}\}\)
As a consequence, we can enumerate the elements of \mathcal{R}:

$$\mathcal{R} = \{ r_1, r_2, r_3, r_4, \ldots \}$$
As a consequence, we can enumerate the elements of \mathcal{R}:

$$\mathcal{R} = \{r_1, r_2, r_3, r_4, \ldots\}$$

Implying:

Countable infinity of \mathcal{R} \iff a one to one relation between \mathcal{R} and the natural integers: $\mathbb{N} = \{1, 2, 3, 4\ldots\}$
On the other hand, \mathcal{I} is “uncountably” infinite.
On the other hand, \mathbb{I} is “uncountably” infinite.

This follows from the fact that f is irrational if and only if its infinite representation $0.d_1d_2...d_k...$ has all its elements belonging randomly to the set $\{0, 1, 2, ...9\}$.
On the other hand, \mathcal{I} is “uncountably” infinite.

This follows from the fact that f is irrational if and only if its infinite representation $0.d_1d_2...d_k...$ has all its elements belonging randomly to the set $\{0, 1, 2, ..., 9\}$.

At that point, the proof of uncountability of \mathcal{I} can be obtained using Cantor’s proof by contradiction.
Let us assume “countability of \mathcal{I}”, i.e. its elements can be listed as \(\{i_1, i_2, i_3, \ldots \} \), a set in a one-one relation with the set of natural numbers.
Let us assume “countability of \mathcal{I}”, i.e. its elements can be listed as \(\{i_1, i_2, i_3, \ldots \} \), a set in a one-one relation with the set of natural numbers.

\[
i_1 = 0.f_{1,1}f_{1,2}\ldots f_{1,k} \ldots
\]
\[
i_2 = 0.f_{2,1}f_{2,2}\ldots f_{2,k} \ldots
\]
\[
\vdots
\]
\[
i_m = 0.f_{m,1}f_{m,2}\ldots f_{m,k} \ldots
\]

Contradiction $i \in \mathcal{I}$ but different from each of the elements in \(\{i_1, i_2, i_3, \ldots \} \).
Let us assume “countability of \mathcal{I}”, i.e. its elements can be listed as $\{i_1, i_2, i_3, \ldots\}$, a set in a one-one relation with the set of natural numbers.

\[
i_1 = 0.f_{1,1}f_{1,2} \ldots f_{1,k} \ldots \\
i_2 = 0.f_{2,1}f_{2,2} \ldots f_{2,k} \ldots \\
\vdots \\
i_m = 0.f_{m,1}f_{m,2} \ldots f_{m,k} \ldots \\
\]

Let $\bar{i} = 0.f_{i,1}, f_{i,2}, \ldots, f_{i,k} \ldots$, such that the $\{f_{i,i}\}$’s are randomly chosen with:

\[
\bar{f}_{1,1} \neq f_{1,1}, \bar{f}_{2,2} \neq f_{2,2}, \ldots, \bar{f}_{k,k} \neq f_{k,k}, \ldots
\]
Let us assume “countability of I”, i.e. its elements can be listed as $\{i_1, i_2, i_3, \ldots\}$, a set in a one-one relation with the set of natural numbers.

\[
i_1 = 0.f_{1,1}f_{1,2} \ldots f_{1,k} \ldots
\]
\[
i_2 = 0.f_{2,1}f_{2,2} \ldots f_{2,k} \ldots
\]
\[
\vdots
\]
\[
i_m = 0.f_{m,1}f_{m,2} \ldots f_{m,k} \ldots
\]
\[
\vdots
\]

Let $\bar{i} = 0.\bar{f}_{1,1}, \bar{f}_{2,2}, \ldots, \bar{f}_{k,k} \ldots$, such that the $\{\bar{f}_{i,i}\}$’s are randomly chosen with:

$\bar{f}_{1,1} \neq f_{1,1}, \bar{f}_{2,2} \neq f_{2,2}, \ldots, \bar{f}_{k,k} \neq f_{k,k}, \ldots$

Contradiction: $\bar{i} \in I$ but \bar{i} different from each of the elements in $\{i_1, i_2, i_3 \ldots\}$.

Rational numbers vs. Irrational numbers
Answer to Main Question
Answer to Main Question

• $|\mathcal{R}| = \infty_1 \equiv \aleph_0$.

Rational numbers vs. Irrational numbers
Answer to Main Question

- $|\mathcal{R}| = \infty_1 \equiv \aleph_0$.
- $|\mathcal{I}| = \infty_2 \equiv \mathcal{C}$.
Answer to Main Question

- $|\mathcal{R}| = \infty_1 \equiv \aleph_0$.
- $|\mathcal{I}| = \infty_2 \equiv \mathcal{C}$.
- With $\aleph_0 \ll$ (“much less than”) \mathcal{C}.

Rational numbers vs. Irrational numbers
Answer to Main Question

- $|\mathcal{R}| = \infty_1 \equiv \aleph_0$.
- $|\mathcal{I}| = \infty_2 \equiv \mathcal{C}$.
- With $\aleph_0 <<$ ("much less than") \mathcal{C}.

\[\rightarrow \text{Prob}(f \in \mathcal{R}) = \frac{\aleph_0}{\aleph_0 + \mathcal{C}} \approx \frac{\aleph_0}{\mathcal{C}} \approx 0. \]